Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking
نویسندگان
چکیده
Fibers and yarns based on carbon nanotubes (CNT) are emerging as a possible improvement over more traditional high strength carbon fibers used as reinforcement elements in composite materials. This is driven by a desire to translate the exceptional mechanical properties of individual CNT shells to achieve high performance macroscopic fibers and yarns. One of the central limitations in this approach is the weak shear interactions between adjacent CNT shells and tubes within macroscopic fibers and yarns. Furthermore, the multiple levels of interaction, e.g., between tubes within a multi-walled CNTor between bundles within a fiber, compound the problem. One promising direction to overcome this limitation is the introduction of strong and stiff cross-linking bonds between adjacent carbon shells. A great deal of research has been devoted to studying such cross-linking by the irradiation of CNT based materials using either high energy particles, such as electrons, to directly covalently cross-link CNTs, or electromagnetic irradiation, such as gamma rays to strengthen polymer cross-links between CNT shells and tubes. Here we review recent progress in the field of irradiation-induced cross-linking at multiple levels in CNT based fibers with a focus on mechanical property improvements. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A comprehensive review on modeling of nanocomposite materials and structures
This work presents a historical review of the researches procured by various scientists and engineers dealing with the nanocomposite materials and continuous systems manufactured from such materials. Nanocomposites are advanced type of well-known composite materials which have been reinforced with nanosize reinforcing fibers and/or particles. Such materials can be better suit for the industrial...
متن کاملCarbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model.
We employ a theoretical model to calculate mechanical characteristics of macroscopic mats and fibers of single-walled carbon nanotubes. We further investigate irradiation-induced covalent bonds between nanotubes and their effects on the tensile strength of nanotube mats and fibers. We show that the stiffness and strength of the mats can be increased at least by an order of magnitude, and thus s...
متن کاملEnhanced mechanical strength and electrical conductivity of carbon-nanotube/TiC hybrid fibers.
We report the synthesis of carbon nanotube/TiC hybrid fibers using a polymer-assisted chemical solution approach. Ti metal ions are bound to aqueous polyethyleneimine (PEI) to form precursor solution. Amphiphilic PEI with Ti easily permeates the CNT fibers. Upon annealing in a controlled atmosphere, a homogeneous TiC network is formed in the CNT fibers. The obtained CNT/TiC hybrid fibers show p...
متن کاملPredicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer
Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...
متن کاملUltrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles.
IO N Utilizing the full mechanical capabilities of individual carbon nanotubes (CNT) – which can exhibit tensile strength and elastic modulus of up to 1TPa and 100 GPa, respectively [ 1–4 ] – has motivated a great deal of interest in CNT based nanocomposite materials. [ 5–10 ] Despite this signifi cant scientifi c effort, the strength, modulus, and toughness of CNT based fi bers and composites ...
متن کامل